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Disclaimer 

This report was prepared as an account of work sponsored by an agency of the United States 

Government. Neither the United States Government nor any agency thereof, nor any of their 

employees, makes any warranty, express or implied, or assumes any legal liability or 

responsibility for the accuracy, completeness, or usefulness of any information, apparatus, 

product, or process disclosed, or represents that its use would not infringe privately owned rights. 

Reference herein to any specific commercial product, process, or service by trade name, 

trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, 

recommendation, or favoring by the United States Government or any agency thereof. The views 

and opinions of authors expressed herein do not necessarily state or reflect those of the United 

States Government or any agency thereof. 
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Abstract 

Sound policy recommendations relating to the role of forest management in mitigating 

atmospheric carbon dioxide (CO2) depend upon establishing accurate methodologies for 

quantifying forest carbon pools for large tracts of land that can be dynamically updated over 

time.  Light Detection and Ranging (LiDAR) remote sensing is a promising technology for 

achieving accurate estimates of aboveground biomass and thereby carbon pools; however, not 

much is known about the accuracy of estimating biomass change and carbon flux from repeat 

LiDAR acquisitions containing different data sampling characteristics. 

In this study, discrete return airborne LiDAR data was collected in 2003 and 2009 across 

~20,000 hectares (ha) of an actively managed, mixed conifer forest landscape in northern Idaho, 

USA. Forest inventory plots, established via a random stratified sampling design, were 

established and sampled in 2003 and 2009.  The Random Forest machine learning algorithm was 

used to establish statistical relationships between inventory data and forest structural metrics 

derived from the LiDAR acquisitions. Aboveground biomass maps were created for the study 

area based on statistical relationships developed at the plot level.  

Over this 6-year period, we found that the mean increase in biomass due to forest growth across 

the non-harvested portions of the study area was 4.8 metric ton/hectare (Mg/ha). In these non-

harvested areas, we found a significant difference in biomass increase among forest successional 

stages, with a higher biomass increase in mature and old forest compared to stand initiation and 

young forest. Approximately 20% of the landscape had been disturbed by harvest activities 

during the six-year time period, representing a biomass loss of >70 Mg/ha in these areas. During 

the study period, these harvest activities outweighed growth at the landscape scale, resulting in 

an overall loss in aboveground carbon at this site. The 30-fold increase in sampling density 

between the 2003 and 2009 did not affect the biomass estimates.   

Overall, LiDAR data coupled with field reference data offer a powerful method for calculating 

pools and changes in aboveground carbon in forested systems.  The results of our study suggest 

that multitemporal LiDAR-based approaches are likely to be useful for high quality estimates of 

aboveground carbon change in conifer forest systems. 
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1. Introduction  

Forests cover approximately one third of the Earthôs land surface. They have a tremendous 

potential to store and cycle carbon (Harmon and Marks, 2002), and therefore represent a crucial 

component of the global carbon cycle. The Food and Agriculture Organization of the United 

Nationôs Global Forest Resources Assessment (FRA, 2005) estimates that the world's forests 

store 283 Gigatonnes (Gt) of carbon in their biomass alone, and that the total carbon stored in 

forested ecosystems, including live and dead wood, litter, detritus, and soil, exceeds the amount 

of carbon found in the atmosphere. Because of continued pressure on forest resources to provide 

environmental services for the ever growing global human population, the interest in quantifying 

carbon pools and fluxes over large geographic areas has increased over the past decades.  In 

particular, forest carbon-related research includes: 

¶ quantifying the role of forest dynamics in the global carbon cycle,  

¶ assessing human impacts (e.g. harvest, prescribed fire, land use change) on forest carbon 

flux and storage,  

¶ estimating how natural forest processes (i.e. insect attacks, wildfires, windthrow) affect 

the global carbon cycle,  

¶ providing carbon accounting to satisfy local- to global-scale policy agreements,  

¶ quantification of timber volume and growth for commercial interests, and  

¶ assessment of carbon storage in the context of maintaining biodiversity and wildlife 

habitat quality and connectivity.  

Regardless of the reason for inquiry, and process by which forest carbon storage changes, it is 

critical to establish repeatable, objective, and accurate methods for estimating aboveground 

forest carbon pools and fluxes over large areas. Direct, diurnal-scale measurements of the carbon 

exchange between forests and the atmosphere are commonly accomplished with measurements 

from continental- and global-scale networks of eddy covariance flux towers (e.g. Schwalm et al. 

2007). These methods are extremely valuable in quantifying net carbon exchange between the 

biosphere and the atmosphere; however, the estimates can be noisy, affected by windy conditions 

and structurally complex vegetation and topography, and limited in geographic extent (Hollinger 

and Richardson 2005). Ecosystem process models, such as Biome-BGC, Forest-BGC, 3PG and 

3PG-S, are useful for better understanding of carbon pools and fluxes in forests (Running and 

Coughlan 1988, Running and Gower 1991, Landsberg and Waring 1997, Coops et al. 1998, 

Waring et al. 2010).  

Integration of these ecosystem process models with remote sensing of land surface 

characteristics have greatly improved our ability to make regional assessments of carbon pools 

and fluxes (e.g. Turner et al. 2004). Although information from passive remote sensing (e.g. 

Advanced Very High Resolution Radiometer [AVHRR], Moderate Resolution Imaging 

Spectroradiometer [MODIS], Landsat) have contributed to regional estimates of Gross Primary 

Production (GPP) and Net Primary Production (NPP), challenges remain in optimizing the 

spatial resolution of remotely sensed data for specific applications and differentiating the relative 

influences of vegetation structure and chemical variables (Turner et al. 2004).  As a result, efforts 

to quantify forest growth (i.e. change in aboveground carbon pools) using traditional passive 

remote sensing imagery have had limited success (Yu et al. 2008). 
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Remote sensing approaches for quantifying forest structure and volume are rapidly evolving. 

Vine and Sathaye (1997) suggest that in order to quantify aboveground forest carbon pools and 

fluxes across broad extents, it is important to combine remote sensing techniques with carbon 

estimation methods that are based on existing standard forest inventory principles. Light 

Detection and Ranging (LiDAR) has been successfully employed for characterizing vertical 

structure and forest attributes such as canopy height distribution, tree height, and crown diameter 

(Nilsson 1996, Hudak et al. 2002, Lefsky et al. 2002, Yu et al. 2008). However, although 

processes governing forest biomass pools are highly dynamic in time, almost all LiDAR-based 

studies aimed at quantifying carbon pools have been based upon single-date data acquisitions, 

and are therefore limited to providing estimates at a single point in time. Robust methods for 

producing wall-to-wall maps of above ground forest carbon using LiDAR combined with field 

data collections and Monte Carlo methods have recently been developed with errors < 1% 

(Gonzales et al. 2010).  

Time series remote sensing studies have been used to estimate both carbon pools and net change 

in aboveground carbon. In a study by Asner et al. (2003), researchers studied pools and fluxes of 

carbon in semiarid woodlands, using texture analysis of black and white aerial photographs from 

1937 compared to spectral mixture analysis of Landsat data from 1999 to estimate the change in 

above ground woody carbon pools and the net flux over the 62 year time period. Strand et al. 

(2008) estimated net change in above ground woody carbon over a 52 year time period using 2-D 

spatial wavelet analysis on time series black and white aerial photography and allometric 

relationships. Tree growth in a conifer plantation was estimated over a 19 year time period using 

synthetic aperture radar (SAR) backscattering changes, with a resulting root mean square error 

(RMSE) in tree growth of 8.2 meters (m) (Balzter et al. 2003). Yu et al. (2008) used multi-

temporal LiDAR acquisitions (10 points/m
2
) to predict volume and mean height growth in mixed 

multi-story boreal forests in Finland with a standard deviation of the residuals of 0.15-0.30 m for 

mean height growth.  While these studies showed promise for multi-temporal LiDAR based 

assessment of forest growth, additional work remains to extend this approach to the 

quantification of carbon (biomass) in forests over time. 

The objective of this research is therefore to combine multi-temporal LiDAR remote sensing 

with forest inventory surveys and statistical modeling to characterize carbon pools and predict 

rates of aboveground carbon sequestration in managed mixed conifer forests of the Northern 

Rocky Mountains (USA).  This project builds on forest inventory data collection and a LiDAR 

acquisition from the summer of 2003 (Evans and Hudak 2007), complemented with similar data 

acquisitions from 2009.  We quantify the impact on forest growth and timber harvest on forest 

carbon pools across the landscape, and examine relationships among changes in these pools 

during this 6-year interval with respect to forest height and successional status. We anticipate 

that our work will not only serve to quantify forest carbon fluxes and pools, but will also 

establish additional rationale for acquiring LiDAR data of forest land across the United States. 
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2. Methods 

2.1 Study Area 

The study is centered in the Palouse Range (~20,000 hectares [ha]; Latitude 46Á 48ǋ N, 

Longitude 116Á 52ǋ W), located in northern Idaho, USA (Figure 1). The area is topographically 

complex, ranging from 780 m to 1520 m in elevation. Climate is characterized by a warm dry 

summer and fall, and a wet winter and spring when most of the mean annual average 

precipitation of 630 ï 1015 millimeters (mm) falls in the form of snow in the winter and rain in 

the spring. Vegetation is primarily comprised of temperate mixed-conifer forest with dominant 

species being Ponderosa pine (Pinus ponderosa C. Lawson var. scopulorum Engelm.), Douglas-

fir (Pseudotsuga menziesii (Mirb.) Franco var. glauca (Beissn.) Franco), grand fir (Abies grandis 

(Douglas ex D. Don) Lindl.), western red cedar (Thuja plicata Donn ex D. Don), and western 

larch (Larix occidentalis Nutt).  

The land ownership is dominated by private timber companies with many private and public land 

inholdings. Inholdings include a large tract of University of Idaho experimental forest land, the 

watershed for the city of Troy, Idaho, and a small parcel of old-growth western red cedar 

managed by Latah county and protected for biodiversity conservation. The variety of habitat 

types and the unique management goals and strategies of each of the landowners, has created a 

forest that is diverse in species composition, stand age, and structure, representing a variety of 

biophysical settings and forest successional stages (Falkowski et al. 2009). Major disturbances 

occurring during the time period 2003 to 2009 include forest management such as harvest, 

thinning, and prescription fire.  The study area is bounded to the north, west, and south by highly 

productive dryland agricultural fields producing crops that include wheat, lentils, and chick peas. 

 

 

Figure 1: Location of the Moscow Mountain study area in north central Idaho. The extent of the 

DEM reflects the boundary of the 2003 LiDAR survey. 
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2.2 LIDAR Surveys and Processing 

LiDAR data was flown during three time periods, 2003, 2007, and 2009. The 2003 LiDAR 

survey was flown by Horizons, Inc. (Rapid City, SD, USA), the 2007 survey by Surdex 

Corporation (Chesterfield, MO, USA), and the 2009 survey by Watershed Sciences, Inc. 

(Portland, OR, USA). The extent of the 2003 LiDAR survey was 32,708 ha, while that of the 

2007 (1,681 ha) and 2009 (19,889 ha) LiDAR surveys was a combined 20,624 ha (they overlap 

by 106 ha), which lies wholly within the extent of the 2003 LiDAR survey (Figure 1). 

Acquisition parameters of these LiDAR surveys are provided in Table 1. The difference in the 

LiDAR survey point densities in the acquisitions from 2003 and 2009 are illustrated in Figure 2.  

 

Table 1: Acquisition parameters of the 2003, 2007, and 2009 LiDAR surveys 

Survey Date Altitude 

Above 

Ground 

LiDAR 

System 

Multiple 

Returns 

Footprint 

Diameter 

Scan 

Angle 

Average 

Post 

Spacing 

Average 

Point 

Density 

Summer 2003 2438 m ALS 40 Up to 

3/pulse 

30 cm +/- 18° 1.58 m 0.40/m
2
 

7 July 2007 1219 m ALS 50 Up to 

4/pulse 

30 cm +/- 15° 0.41 m 5.98/m
2
 

30 June 2009 2000 m ALS 50 Up to 

4/pulse 

30 cm +/- 14° 0.29 m 11.95/m
2
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Figure 2: Comparison of LiDAR survey point densities in 2003 (0.4 points/m
2
, left) and 2009 (12 

points/m
2
, right) at the scale of a single undisturbed 0.25-ha inventory plot (#2899), as viewed 

from overhead (top) and from the side before detrending for topography (middle) and after 

(bottom). Note that despite the 30-fold difference in point density between the two surveys, the 

vertical distribution of points indicative of canopy structure is consistently shaped, making the 

plot-level canopy height metrics directly comparable. Mean height in this plot increased 2.0 m 

from 2003 (4.0 m) to 2009 (6.0 m) as indicated by the dotted horizontal lines. 
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The 2009 LiDAR data was delivered in the common Log ASCII Standard (LAS) LiDAR format, 

and the libLAS library for reading and writing such data was used to extract the data into text 

files (http://liblas.org/). The flow of LiDAR processing steps is diagrammed in Figure 3. The 

data was delivered in tiles, with a size of <0.5 million points per tile.  For each LiDAR point, the 

following characteristics were delivered:  

¶ x and y coordinates,  

¶ absolute elevation (z),  

¶ the number of LiDAR returns at this location and the return number for the point, and 

¶ the laser return intensity ranging from 0 to 255.  

 

 

Figure 3: Procedure for deriving biomass estimates from remote sensing LiDAR data and field 

information. The LiDAR surveys from 2003 and 2007/2009 were processed separately to 

estimate above ground woody biomass followed by grid subtraction to obtain the change in 

biomass. 

 

Points were converted from text format into the ArcInfo coverage format using the GENERATE 

command in Arc Macro Language (AML). The ground returns were separated from the 

vegetation returns with the multiscale curvature classification method (MCC, Evans and Hudak 

2007). The scale parameter used in the MCC AML was set to match the LiDAR post-spacing, 

and we used a curvature parameter of 0.8, a tension parameter of 0.07 and a 5 pixel kernel. A 

digital terrain model of 1 m pixel resolution was created from the LiDAR ground returns through 

interpolation of the z values using the TOPOGRID function in ArcInfo, which generates a 

hydrologically correct grid of elevation from ground point data.  

Because of the high density of the dataset, it was necessary to process the LiDAR data in 10 

independent yet overlapping tiles that were later merged. Care was taken not to introduce edge 

effects in each tile by removing the overlapping edge pixels prior to merging the tiles. Vegetation 

height for each LiDAR return was computed by subtracting the value of the digital terrain model 

from the LiDAR z-value. A few instances of anomalously high points (e.g. > 100 m) 

representing LiDAR returns from birds or other particles in the air were removed from the 

http://liblas.org/
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dataset. LiDAR data from the 2003 acquisition was processed in a similar fashion; see Evans and 

Hudak (2007) for a detailed description of the 2003 LiDAR points.  

LiDAR vegetation structure metrics were computed for both the 2003 and 2009 LiDAR 

acquisitions based on the height and intensity of the LiDAR returns within 20 m grid cells across 

the study area in the statistical software package R (R Development Core Team 2007). The 1 m 

digital terrain model was resampled to 20 m by the bilinear resampling method in ArcInfo Grid 

to match the origin of the LiDAR metrics. Secondary topographic metrics were derived from the 

20 m digital terrain model.  LiDAR metrics were also computed within each 11.35 m radius 

inventory plot, and the topographic metrics were extracted from the 20 m topographic layers at 

each plot center. 

 

2.3 Field Sampling 

In 2003, the study area was stratified by elevation and solar insolation into nine unique 

combinations. Inventory plots were systematically placed within each stratum guided by a 

Landsat-derived leaf area index (Pocewicz et al. 2004). This method of stratification ensured that 

the forest inventory plots covered the full range of forest habitat types and canopy structure 

conditions across the study area. The 2003 LiDAR survey was calibrated and validated with 84 

field plots, of which 76 were located within the reduced extent of the 2007 (n=4) and 2009 

(n=72) LiDAR surveys. During the summer of 2003, an 11.35 m fixed-radius (404.69 m
2
) forest 

inventory plot was installed at each sample location. The diameter at breast height (dbh), tree 

species, tree height, as well as distance and bearing from plot center, were measured and 

recorded for all trees (dbh > 2.7 cm) within the fixed radius plot. Seedlings and saplings were 

measured and tallied across the inventory plot. See Falkowski et al. (2005) for additional details 

regarding the sampling design and data collection procedures.  

The 2003 field plots were given priority for populating the 2009 stratification. A new private 

landowner denied us permission to revisit one of our 2003 plots, so only 75 plots were re-

measured. In addition, because the landscape had changed since 2003, 14 of the strata were left 

unfilled by existing plots, necessitating the addition of 14 new plots. This resulted in 75 + 14 = 

89 plots for 2009 model calibration/validation. 

 

2.4 Biomass Modeling 

Models for predicting biomass were developed from the field data collected in both 2003 and 

2009, using the Random Forest machine learning algorithm (Brieman 2001) based on LiDAR 

height metrics, intensity metrics and topographic metrics. The suite of input variables used in the 

Random Forest modeling is described by Hudak et al. (2008). Random Forest is a non-

parametric technique that can handle both continuous and categorical independent variables. The 

technique uses a bootstrap approach for achieving higher accuracies compared to traditional 

classification tree modeling. Random Forest uses the Gini statistic for node splitting which 

allows for non-linear variable interactions. A large number of classification trees are produced, 

permutations are introduced at each node, and the most common classification result is selected. 

The technique has been used successfully for classifying LiDAR data into forest succession 

classes (Falkowski et al. 2009), for classifying passive remote sensing data into desired 
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vegetation classes (Falkowski et al. 2005), for characterizing mountain pine beetle infestations 

(Coops et al 2006) and for estimating forest structure attributes from LiDAR data (Hudak et al. 

2008, Martinuzzi et al., 2009). 

 

2.5 Spatial Analysis 

Biomass was estimated within each 20 m pixel across the study area by applying the biomass 

models developed from field data via the Random Forest algorithm for the time periods 2003 and 

2009. Change in biomass over the six year time period was calculated via grids in ArcInfo by 

subtracting the biomass estimated for 2003 from the biomass estimated for 2009. 

Biomass increase within successional stages was estimated via overlay analysis between a map 

of successional stages developed for the same study area by Falkowski et al. (2009) and the 

change in biomass estimated as part of this project. Successional stages mapped by Falkowski et 

al. (2009) included:  

¶ Open ï treeless areas, stand initiation;  

¶ Stand Initiation (SI) ï space reoccupied by seedlings, saplings or shrubs following a stand 

replacing disturbance;  

¶ Understory Reinitiation (UR) - older cohort of trees being replaced by new individuals, 

broken overstory with an understory stratum present;  

¶ Young Multistory (YMS) - two or more cohorts of young trees from a variety of age 

classes;  

¶ Mature Multistory (MMS) -  two or more cohorts of mature trees from a variety of age 

classes; and  

¶ Old Multistory (OMS) - two or more cohorts of trees from a variety of age classes, 

dominated by large trees.  

Areas that experienced a decrease in biomass from 2003 to 2009 were excluded from the 

analysis to avoid impacts of human activity or natural disturbance in the successional stage 

growth estimates. We tested the hypothesis that there is a significant difference in biomass 

increase within undisturbed areas between forest successional stages with a one-way Analysis of 

Variance (ANOVA). Tukeyôs post-hoc test was employed to evaluate which of the successional 

stages had experienced significant differences in biomass increase over the six year period. 
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3. Results 

3.1 Change in Biomass 

Both the 2003 and 2009 LiDAR survey landscapes were independently stratified by elevation, 

insolation, and canopy cover in stratified random sampling designs. Elevation was obtained from 

a USGS Digital Elevation Model (DEM), and an insolation layer calculated using Solar Analyst 

(Fu and Rich, 1999). Canopy cover was estimated from satellite image-derived vegetation 

indices. Our strategy was to treat each time period as an independent assessment, as a forest 

manager may likely do, so both the 2003 and 2009 biomass models were developed 

independently based on all available contemporaneous plot measures from the 2003 (n=84) or 

2009 (n=89) field surveys. Variable selection from a suite of 49 candidate LiDAR height, 

density, and intensity metrics was also performed separately yet consistently.  

A Random Forest model selection function that uses Model Improvement Ratio (MIR) 

standardized importance values (Evans and Cushman 2009, Evans et al. 2010, Murphy et al. 

2010) was used to choose the most important predictor variables from the suite of candidate 

LiDAR metrics. In the interest of parsimony, models with selected predictor variables that were 

highly correlated (Pearsonôs r > 0.9) were pruned to include only predictor variables with 

Pearson's r < 0.9. In cases where r > 0.9, the variable with lesser importance according to the 

MIR statistic was excluded from consideration, and the model selection function rerun to search 

for alternative predictors. The function selected a total of eight metrics for predicting 2003 

biomass and ten metrics for predicting 2009 biomass (Table 2, Figure 4, & Figure 5). The most 

important metric was mean height, followed by several other height, density and intensity 

metrics, while no topographic metrics were selected. The Random Forest algorithm in R (R 

Development Team, v2.10.0) was then used to predict biomass in 2003 and 2009 from these 

variables (Table 2), with their importance values shown in Figure 4 and Figure 5. 

 

Table 2: LiDAR metrics selected for the independent 2003 and 2009 biomass models. 

Metric Metric Description 2003 Biomass Model 2009 Biomass Model 

hmean Height mean *  *  

hmad Height median absolute deviation  *  

hmax Height maximum *   

h90th Height 90
th
 percentile  *  

hskew Height skewness *  *  

hiqr Height interquartile range *  *  

crr Canopy relief ratio *   

stratum2 Stratum 2 canopy density  *  

stratum4 Stratum 4 canopy density *  *  

stratum5 Stratum 5 canopy density *  *  

imean Intensity mean *  *  

i10th Intensity 10
th
 percentile  *  

 

  



Forestry Field Validation Test              Page 15 

 

 

Figure 4: Random Forest variable importance measures for the 2003 biomass model according to 

two statistics: Mean Decrease Accuracy (%IncMSE) (left) and Mean Decrease Gini 

(IncNodePurity) (right). The most important variables are sorted decreasingly from top to 

bottom. 
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Figure 5: Random Forest variable importance measures for the 2009 biomass model according to 

two statistics: Mean Decrease Accuracy (%IncMSE) (left) and Mean Decrease Gini 

(IncNodePurity) (right). The most important variables are sorted decreasingly from top to 

bottom.  
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While the full count of plots could be used to develop the independent 2003 and 2009 biomass 

models, only the 75 plots common to both field surveys were available for comparing plot-level 

biomass predictions. Plots of predicted biomass (Figure 6) and biomass change (Figure 7) reveal 

considerable scatter around the 1:1 line because the models include both undisturbed and 

disturbed plots, as is also evident in the observations. Partitioning the data into the undisturbed 

and disturbed plot classes as they were called in the field reveals greater sensitivity and accuracy 

in the model predictions relative to observations (Figure 8). However, the difference between 

independent 2003 and 2009 biomass predictions was conservative, or less than observed, in both 

the undisturbed and disturbed plots. 

 

Figure 6: Predicted vs. observed aboveground tree biomass from the independent 2003 and 2009 

models. 
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Figure 7: Predicted vs. observed aboveground tree biomass change from 2003 to 2009 
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Figure 8: Observed and predicted aboveground tree biomass change in undisturbed (top) and 

disturbed (bottom) plots 

 

Closer examination of the most important predictor variable in both the 2003 and 2009 models, 

mean canopy height, reveals the sensitivity and accuracy of the LiDAR canopy height 

distributions despite different point densities (Figure 9).  
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Figure 9: Mean canopy height in 2003 and 2009 and mean canopy height change in undisturbed 

and disturbed plots 

 

Biomass estimates for the region were mapped at a 20 m pixel resolution based on models 

developed at the plot level for the two time periods 2003 and 2009 (Figure 10). Biomass change 

was derived by subtracting the two maps (Figure 11). Removed from consideration were 

nonforested agricultural areas classified from the LiDAR as having zero canopy density in both 

2003 and 2009, amounting to 6.1% of the landscape, found mostly around the periphery of the 

study area. A histogram of the biomass change was derived for a better understanding of the 

biomass change distribution (Figure 12). Harvested areas in the biomass change map (Figure 11) 
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were defined as a loss in biomass of 70 Mg/ha or more. After six years, the mean biomass 

increase across the unharvested forest (73.7% of the study area), excluding nonforest agricultural 

areas (6.1% of study area), was 4.8Mg/ha (standard deviation 34.2 Mg/ha); mean biomass 

decrease in harvested forest areas (20.2% of the study area) was 185.1 Mg/ha (standard deviation 

97.1 Mg/ha).  

 

 

Figure 10: Mapped 2003 and 2009 aboveground tree biomass predictions across the combined 

extent of the 2007 and 2009 LiDAR surveys 
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Figure 11 : Mapped 2003-2009 aboveground tree biomass change 

 

 

Figure 12: Histogram of biomass change with the class breaks in Fig. 11 included (y axis 

represents number of pixels) 

 

Whether or not a 2003 inventory plot was disturbed was recorded during the 2009 field visits; 

this information was used to objectively determine a disturbance threshold. The discrepancy 

between biomass change observed at the field plots (Figure 8) and biomass change estimated 

from the maps may be attributable to field plot classifications of disturbance that included even 
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minor management interventions besides harvest disturbance. Of the 89 inventory plots 

characterized in 2009, 75 were revisited 2003 plots. Twenty of the 75 revisited plots (26.7%) 

were labeled as disturbed in the 2009 survey. At the landscape level, 20.2% of the 20,624 ha 

landscape with repeat LiDAR coverage was classified as harvested using this <= -70 Mg/ha 

disturbance threshold. 

Predicted aboveground tree biomass and biomass change were extracted from the maps (Figure 

10 & Figure 11) at the re-measured field plot locations (n=75) and at systematic 500 m intervals 

(n=810 samples). Plots of these data versus mean height, the most important predictor variable in 

both the 2003 and 2009 biomass models reveal a close linear relationship (Figure 13). The 

relationship of aboveground tree biomass to maximum canopy height (Figure 14) and canopy 

density (not shown) is curvilinear and much looser. Further examination of estimated biomass 

change at undisturbed sites, calculated as the difference between the 2009 and 2003 biomass 

predictions at the field plots and systematically sampled landscape sites, revealed no relationship 

between aboveground tree biomass accretion and mean canopy height; however, it did show a 

relationship to height growth (Figure 15). 
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Figure 13: Relationship of predicted aboveground tree biomass to mean canopy height in 2003 

(top) and 2009 (bottom) at the field plots (left) and a systematic sample of sites across the 

landscape (right) 
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Figure 14: Relationship of predicted aboveground tree biomass to maximum canopy height in 

2003 (top) and 2009 (bottom) at the field plots (left) and a systematic sample of sites across the 

landscape (right). 
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Figure 15: Relationship of biomass change to mean canopy height in 2003 (top), 2009 (middle), 

and 2003-2009 mean canopy height growth at the undisturbed field plots (left) and systematic 

sample of undisturbed sites across the landscape (right) 

 

3.2 Biomass by Successional Stage 

Analysis of variance confirmed that there is an overall difference (df = 5, F = 261, p < 0.0001) in 

biomass increase within the six successional stages evaluated in this study (Figure 16).  We 

found that the longer the time since disturbance, the greater the accumulation of biomass over the 

6-year study period.  Biomass accumulation among successional classes was significantly 
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different, with the exceptions of differences between Stand Initiation (SI) and Understory 

Reinitiation (UR), and between Young Multistory (YMS) and Mature Multistory (MMS) not 

being significant (p > 0.05). 

 

 

Figure 16: Above ground woody biomass change within previously mapped successional stages. 

The error bars indicate the 95% confidence intervals. Overall, the biomass change within 

successional stages is significantly different (p< 0.0001). The difference between SI and UR is 

not significant (p > 0.05) and neither is the difference between YMS and MMS; all other 

pairwise comparisons are significantly different, however. 
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4. Discussion 

4.1 Effects of Differences in LIDAR Acquisitions 

Both the 2003 and 2009 LiDAR survey landscapes were independently sampled using stratified 

random sampling designs for distributing field plots in a representative yet unbiased manner. 

Therefore, our strategy was to treat them as independent assessments. This strategy should prove 

heartening for others attempting to conduct a biomass/carbon change assessment via repeat 

LiDAR surveys but with several important considerations. 

First, LiDAR sensor capabilities are advancing at a high rate. The 30-fold mean difference in 

point densities between the 2003 and 2009 LiDAR surveys did not affect our biomass estimates 

at the plot level, because the distribution of canopy heights was stable (Figure 3). This suggests 

that if the pulse energy, footprint size, and scan angle are held constant, the probability that a 

LiDAR pulse will penetrate the canopy, reflect off the ground, and then pass back through the 

canopy to the sensor should be the same regardless of the pulse density (Table 1). Therefore, 

LiDAR data from different LiDAR systems (in our case, the ALS40 and ALS50 in 2003 and 

2009, respectively) are directly comparable when aggregated to an appropriate scale. The 0.4 

points/m
2
 mean point density of the 2003 survey translates to a mean of 160 points per 0.25-ha 

(400 m
2
) plot, which is a sufficient number of points to produce a stable canopy height 

distribution from which to extract canopy height metrics. The mean of 4790 points/plot collected 

in 2009 represents over-sampling at the plot level of aggregation, but may be sufficiently dense 

for individual tree characterization in the future, as LiDAR sensor capabilities continue to 

improve.  

Other metrics exhibited the same trends as mean canopy height with regard to the undisturbed vs. 

disturbed plots (Figure 8), but are not shown for brevity. Maximum canopy height may be a less 

reliable predictor to compare in our case, because the much higher LiDAR pulse density in 2009 

than in 2003 would translate into less height underestimation bias (i.e., higher accuracy) while 

mean canopy height would not be subject to such a bias. 

The selection of locations for field plots based on a landscape stratification will change if the 

landscape changes, which is a given, or if the extent of the study landscape changes, as was also 

the case in our study. It is important that the calibration/validation plots represent the landscape 

in a representative yet unbiased manner. This can be accomplished through random or random 

stratified sampling designs conditioned on the spatial extent of the landscape they represent, or 

systematic monitoring plots as used by the USFS Forest Inventory and Analysis program (FIA). 

The coarse spatial frequency of FIA plots relative to this and most other LiDAR project areas 

requires more intensive localized sampling to adequately characterize the range of variability in 

forest structure conditions of interest. 

 

4.2 Biomass Gains by Successional Stage 

Assessing biomass accumulation over large areas and extended time periods is essential for 

improved estimates of carbon pools and fluxes and potential effects on the global carbon budget 

(Strand et al. 2008).  Stand age has been shown by several researchers to affect ecosystem carbon 

uptakes. For example, Law et al. (2003) recorded differences in carbon accumulation rates along 

a chronosequence after a clearcut in ponderosa pine (Pinus ponderosa) in Oregon. Young 
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regenerating stands were found to lose carbon to the atmosphere, while older stands were 

accumulating carbon up to an age of 100-200 years of age when the carbon accumulation rates 

were reduced again. Similarly, Schwalm et al. (2007) recorded carbon loss in young stands (< 20 

years) followed by an increased ecosystem net primary productivity with increased stand age in 

Douglas-fir (Pseudotsuga meziesii) in British Columbia using eddy covariance flux 

measurements. Although successional stages are not necessarily related to stand age, we found 

that successional stages containing mature and old trees stored more carbon over a six year time 

period than did stands composed of younger trees (Figure 8). Because the majority of the study 

area is managed, and harvest has occurred in most places within the past 100 years, we did not 

expect to find a decrease in biomass accumulation for successional stages dominated by large 

trees at this point in time. Potentially, a future lack of disturbance in the area would lead to 

decreased carbon accumulation at some point in time; however, the current data did not allow us 

to test this hypothesis. 

 

4.3 Sources of Error 

Although 75 of the 2003 field plots were re-measured in 2009, they were unfortunately not 

marked with permanent monuments in 2003, only geolocated with differential GPS to a 

horizontal uncertainty of <2m. The 2009 field crews placed (and geolocated also with differential 

GPS) the 2009 plot centers as nearly as possible to the 2003 plot center locations, but the 

differences between 2003 and 2009 plot locations vary from 0.46 m to 9.25 m with a mean of 

2.67 m and a standard deviation of 1.65 m. These mismatches do not include the additive 

uncertainties in the 2003 and 2009 plot locations. This geolocation error can amount to a large 

source of error at the fine scale of canopy structure variation that is undoubtedly contributing 

greatly to the scatter in the biomass change estimates illustrated in Figs. 6-7. The results are 

nevertheless encouraging because these errors should be randomly distributed, which is why the 

mean estimates of predicted biomass change in Fig. 7 are reasonable. This is the major reason we 

have presented only independent 2003 and 2009 biomass models in this report, rather than an 

attempt to model biomass change directly. 

Our solution for model refinement is to reconcile the 2003 and 2009 tree lists, since trees have 

the useful quality of immobility. The trees also were not labeled by permanent tree tags in 2003, 

only temporary ones. However, the distance and bearing to measured trees was recorded. 

Therefore, by graphically comparing the plot-level stem maps and identifying the same trees, we 

can calculate x and y offsets between the 2003 and 2009 plot locations and adjust them 

accordingly. Recalculating plot-level LiDAR metrics from the corrected plot footprints should 

lead to more consistent predictions and greatly reduce the scatter in Figs. 5-7, particularly the 

undisturbed plots in Figs. 6-7 that would exhibit greater sensitivity to shifted plot footprints. 
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5. Conclusion 

In this study, we demonstrate the utility of using multi-temporal discrete return airborne LiDAR 

surveys in concert with field sampling and statistical modeling techniques to quantify 

spatiotemporal patterns of aboveground biomass accumulation in a heavily managed conifer 

forest.  This forest is representative of many forests around the globe in that it is managed by 

multiple user groups, including industrial forestry companies, private owners, and public land 

managers.  The results of this study indicate that multi-temporal LiDAR is an accurate method 

that is viable for monitoring broad-scale changes in aboveground forest biomass across large 

tracts of land.  As LiDAR data become continually more available across a range of biomes, we 

expect that this approach will assist with quantifying the amount of carbon stored in forest 

ecosystems and therefore support current and future efforts to mitigate increasing levels of 

atmospheric CO2. 

 








