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Disclaimer 

This report was prepared as an account of work sponsored by an agency of the United States 

Government. Neither the United States Government nor any agency thereof, nor any of their 

employees, makes any warranty, express or implied, or assumes any legal liability or 

responsibility for the accuracy, completeness, or usefulness of any information, apparatus, 

product, or process disclosed, or represents that its use would not infringe privately owned rights. 

Reference herein to any specific commercial product, process, or service by trade name, 

trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, 

recommendation, or favoring by the United States Government or any agency thereof. The views 

and opinions of authors expressed herein do not necessarily state or reflect those of the United 

States Government or any agency thereof. 
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Executive Summary 

There is growing need for rapid, accurate, and inexpensive methods to measure, and verify soil 

organic carbon (SOC) change for national greenhouse gas accounting and the development of a 

soil carbon trading market.   Laboratory based soil characterization typically requires significant 

soil processing, which is time and resource intensive.  This severely limits application for large-

region soil characterization.  Thus, development of rapid and accurate methods for characterizing 

soils are needed to map soil properties for precision agriculture applications, improve regional 

and global soil carbon (C) stock and flux estimates and efficiently map sub-surface metal 

contamination, among others.   The greatest gains for efficient soil characterization will come 

from collecting soil data in situ, thus minimizing soil sample transportation, processing, and lab-

based measurement costs.  Visible and near-infrared diffuse reflectance spectroscopy (VisNIR) 

and laser-induced breakdown spectroscopy (LIBS) are two complementary, yet fundamentally 

different spectroscopic techniques that have the potential to meet this need.  These sensors have 

the potential to be mounted on a soil penetrometer and deployed for rapid soil profile 

characterization at field and landscape scales.  Details of sensor interaction, efficient data 

management, and appropriate statistical analysis techniques for model calibrations are first 

needed. 

In situ or on-the-go VisNIR spectroscopy has been proposed as a rapid and inexpensive tool for 

intensively mapping soil texture and organic carbon (SOC).  While lab-based VisNIR has been 

established as a viable technique for estimating various soil properties, few experiments have 

compared the predictive accuracy of on-the-go and lab-based VisNIR. Eight north central 

Montana wheat fields were intensively interrogated using on-the-go and lab-based VisNIR.  Lab-

based spectral data consistently provided more accurate predictions than on-the-go data.  

However, neither in situ nor lab-based spectroscopy yielded even semi-quantitative SOC 

predictions.  There was little SOC variability to explain across the eight fields, and on-the-go 

VisNIR was not able to capture the subtle SOC variability in these Montana soils. With more 

variation in soil clay content compared to SOC, both lab and on-the-go VisNIR showed better 

explanatory power.  There are several potential explanations for poor on-the-go predictive 

accuracy: soil heterogeneity, field moisture, consistent sample presentation, and a difference 

between the spatial support of on-the-go measurements and soil samples collected for laboratory 

analyses. Though the current configuration of a commercially available on-the-go VisNIR 

system allows for rapid field scanning, on-the-go soil processing (i.e. drying, crushing, and 

sieving) could improve soil carbon predictions. 

Laser-induced breakdown spectroscopy (LIBS) is an emerging elemental analysis technology 

with the potential to provide rapid, accurate and precise analysis of soil constituents, such as 

carbon, in situ across landscapes.  The research team evaluated the accuracy of LIBS for 

measuring soil profile carbon in field-moist, intact soil cores simulating conditions that might be 

encountered by a probe-mounted LIBS instrument measuring soil profile carbon in situ.  Over 

the course of three experiments, more than120 intact soil cores from eight north central Montana 

wheat fields and the Washington State University (WSU) Cook Agronomy Farm near Pullman, 

WA were interrogated with LIBS for rapid total carbon (TC), inorganic carbon (IC), and SOC 

determination.  Partial least squares regression models were derived and independently validated 

at field- and regional scales. Researchers obtained the best LIBS validation predictions for IC 

followed by TC and SOC.  Laser-induced breakdown spectroscopy is fundamentally an 
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elemental analysis technique, yet LIBS PLS2 models appeared to discriminate IC from TC.  

Regression coefficients from initial models suggested a reliance upon stoichiometric 

relationships between carbon (247.8 nm) and other elements related to total and inorganic carbon 

in the soil matrix [Ca (210.2 nm, 211.3 nm, and 220.9 nm), Mg (279.55-280.4 nm, 285.26 nm), 

and Si (251.6 nm, 288.1 nm)].  Expanding the LIBS spectral range to capture emissions from a 

broader range of elements related to soil organic matter was explored using two spectrometer 

systems to improve SOC predictions.   Results for increasing the spectral range of LIBS to the 

full 200-800 nm found modest gains in prediction accuracy for IC, but no gains for predicting 

TC or SOC.  Poor SOC predictions are likely a function of 1) the lack of a consistent/definable 

molecular composition of SOC, 2) relatively little variation in SOC across field sites, and 3) 

inorganic carbon constituting the primary form of soil carbon, particularly for Montana soils.  

Exploration into alternative data reduction and statistical modeling techniques continues in an 

effort to increase prediction accuracy, model parsimony, and computational efficiency.  As 

research matures for this emerging spectroscopic method, new field-deployable equipment 

should be developed to exploit the unique ability of LIBS to rapidly characterize soil elemental 

composition. 

VisNIR and LIBS are fundamentally different, yet complementary spectroscopic techniques. The 

LIBS technique is an elemental analysis method that can quickly determine elemental 

composition of heterogeneous material, whereas VisNIR is based on the fundamentals of light 

energy absorption by molecular bond vibrations. The research team attempted to take advantage 

of these fundamental differences by combining spectral information obtained by VisNIR and 

LIBS sensors.  It was hypothesized that this may provide more accurate, robust, and spatially 

transferable soil carbon determination than individual sensors currently permit. The 120 cores 

interrogated with LIBS, as discussed previously, were concurrently scanned with VisNIR.  

Preliminary exploration of combining VisNIR and LIBS spectra was completed using data in 

2007 (78 cores) and PLS regression. Combining LIBS and VisNIR data slightly improved TC 

predictions, but did not improve IC or SOC predictions compared to individual sensor results.  

The results suggest that PLS regression is sensitive to large predictor datasets.  It is suspected 

that the 2046 LIBS wavelength predictors dominated the PLS analysis and overwhelmed 

information found in the 216 VisNIR wavelength predictors.  Reduction of LIBS spectra poses a 

difficult challenge to overcome.  Other approaches may be able to use the data at the current 

resolution to build better predictive spectral models for TC, IC, and SOC, regardless of the 

number of predictor variables; however alternative multivariate statistical and data mining 

approaches continue to be tested. 

VisNIR and LIBS spectroscopy have the potential to fill the growing need for rapid, accurate, 

and inexpensive methods to measure, and verify soil organic carbon change.  These 

fundamentally different techniques performed individually mostly as expected; however the 

combined LIBS-VisNIR data array did not consistently improve predictive accuracies over 

individual sensors.  A field unit with a LIBS-VisNIR array mounted in a soil penetrometer, when 

fully operational, would allow for rapid soil profile characterization and mapping at field and 

landscape scales. 
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1. Overview and Organization of Report 

This report summarizes research to study and compare two different spectroscopic techniques for 

conducting soil characterization: visible and near-infrared diffuse reflectance spectroscopy 

(VisNIR) and laser-induced breakdown spectroscopy (LIBS).  

Section 2 presents a study of VisNIR, and Section 3 presents a study of LIBS.  Section 4 presents 

the results of an updated LIBS study with modified instrumentation.  In Section 5, the results of 

the two techniques are compared and analyzed.  Section 5 also discusses research to use the two 

techniques in combination in order to enhance results. 
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2. On-the-go VisNIR: Potential and limitations for mapping soil clay and 

organic carbon 

Bricklemyer, R.S., and D.J. Brown. 2010. On-the-go VisNIR: Potential and limitations for 

mapping soil clay and organic carbon. Comput. Electron. Agric. 70:209-216. 

Abstract 

In situ or on-the-go visible and near infrared (VisNIR) diffuse reflectance spectroscopy has been 

proposed as a rapid and inexpensive tool for intensively mapping soil texture and organic carbon 

(SOC).  While lab-based VisNIR has been established as a viable technique for estimating 

various soil properties, few experiments have compared the predictive accuracy of on-the-go and 

lab-based VisNIR.  In this study, eight north central Montana wheat fields were intensively 

interrogated using on-the-go and lab-based VisNIR.  The on-the-go VisNIR system employed a 

spectrophotometer (350-2224 nm, 8-nm spectral resolution) built into an agricultural shank 

mounted on a toolbar and pulled behind a tractor.  Regional (whole-field out cross-validation) 

and hybrid (regional model including randomly chosen ólocalô calibration samples) spectral 

models were calibrated using partial least squares regression.  Lab-based spectral data 

consistently provided more accurate predictions than on-the-go data.  However, neither in situ 

nor lab-based spectroscopy yielded even semi-quantitative SOC predictions.  For hybrid models 

with 9 local samples included in the calibrations, standard error of prediction (SEP) values were 

2.6 and 3.4 g kg
-1

 for lab and on-the-go VisNIR respectively, with sSOC = 3.2 g kg
-1

.  With an 

SOC coefficient of variation (CV) = 26.7%, even with a relatively low SEP values, there was 

little SOC variability to explain.  For clay content, hybrid +7 calibrations yielded lab SEP = 53.1 

g kg
-1

 and residual product differential (RPD) = 1.8 with on-the-go SEP = 69.4 g kg
-1

 and RPD = 

1.4.  With more variability (sClay = 91.4 g kg
-1

 and CV = 49.6%), both lab and on-the-go VisNIR 

show better explanatory power.  There are a number of potential explanations for degraded on-

the-go predictive accuracy: soil heterogeneity, field moisture, consistent sample presentation, 

and a difference between the spatial support of on-the-go measurements and soil samples 

collected for laboratory analyses.  In terms of predictive accuracy, our results are largely 

consistent with those previously published by Christy (2008), but on-the-go VisNIR was not able 

to capture the subtle SOC variability in Montana soils.  Though the current configuration of the 

Veris on-the-go VisNIR system allows for rapid field scanning, on-the-go soil processing (i.e. 

drying, crushing, and sieving) could improve predictions. 

2.1 Introduction 

Soil properties, including soil organic carbon (SOC) and soil texture, vary spatially across 

landscapes (McBratney and Pringle, 1997).  To cost-effectively capture soil variability, on-the-

go visible and near infrared (VisNIR) spectroscopy has been proposed as a rapid and inexpensive 

method of intensively measuring and mapping SOC, soil texture (i.e. clay content), and other soil 

properties (Adamchuk et al., 2004; Christy, 2008; Gehl and Rice, 2007).  While lab-based 

VisNIR has been established as a viable technique for the estimation of multiple soil properties 

(Brown et al., 2006; Morgan et al., 2009; Reeves and McCarty, 2001; Shepherd and Walsh, 

2002; Viscarra Rossel et al., 2006; Waiser et al., 2007), and there are a few published studies of 

in situ VisNIR (Ben-Dor et al., 2008; Morgan et al., 2009; Viscarra Rossel et al., 2009; Waiser et 

al., 2007), few experiments have evaluated the potential and limitations of VisNIR on-the-go for 



Cropland Field Monitoring: MMV              Page 10 

 

SOC or soil clay content (Christy, 2008; Shibusawa et al., 1999; Shonk et al., 1991; Sudduth and 

Hummel, 1993a; Sudduth and Hummel, 1993b).   

Researchers have evaluated lab-based estimation of SOC and soil clay content using VisNIR 

spectroscopy applied to air-dried, crushed and sieved soil samples for a diverse range of soil 

materials and calibration-validation designs (Viscarra Rossel et al., 2006).  Soil organic carbon 

content has been estimated using VisNIR spectra with root mean square error (RMSE) ranging 

from 0.9 g kg
-1

 to 12.7 g kg
-1

, depending upon soil diversity and validation rigor (Ben-Dor and 

Banin, 1995; Brown et al., 2006; Islam et al., 2003; McCarty et al., 2002; Morgan et al., 2009; 

Reeves et al., 1999; Shepherd and Walsh, 2002; Vasques et al., 2008).  Similarly, soil clay 

content has been predicted on prepared soils with RSME = 11 to 95 g kg
-1

 (Ben-Dor and Banin, 

1995; Brown et al., 2006; Islam et al., 2003; Janik et al., 1998; Shepherd and Walsh, 2002; 

Waiser et al., 2007).  If these results are screened to only include independently validated 

calibrations (Brown et al., 2006), the literature suggests that lab-based VisNIR can provide semi-

quantitative estimation (RPD = 1.5-2.0; with RPD>2.0 considered quantitative) of SOC and clay 

content. 

On-the-go and static in situ VisNIR methods introduce unique challenges for accurate 

determination of soil properties compared to controlled conditions in the laboratory.  Natural soil 

heterogeneity, macro-aggregation, and field moisture content have been identified as variables 

that can reduce the predictive accuracy of VisNIR methods (Christy, 2008; Morgan et al., 2009; 

Sudduth and Hummel, 1993a; Waiser et al., 2007).  Sensors moving through the soil can also 

cause inconsistent soil presentation, smearing, and spectral data that are averaged over some 

distance traveled, dependent on acquisition time and velocity, which can also degrade accurate 

VisNIR predictions (Morgan et al., 2009; Sudduth and Hummel, 1993a; Waiser et al., 2007).   

Both in situ and lab-based VisNIR accuracy statistics are affected by soil diversity and validation 

rigor (Brown et al., 2005; Morgan et al., 2009; Waiser et al., 2007). 

Static VisNIR is accomplished by holding a spectrometer fore-optic stationary on a soil face for 

interrogation, potentially via a penetrometer mounting.  This method has been tested on exposed 

soil faces in pit walls (Ben-Dor et al., 2008; Viscarra Rossel et al., 2009), exterior walls of 

extracted soil core holes (Ben-Dor et al., 2008), and the exterior walls of intact cores (Morgan et 

al., 2009; Waiser et al., 2007).  Waiser et al. (2007) predicted clay content in field-moist intact 

soil cores using partial least squares regression (PLSR) models, which were validated using 30% 

of cores randomly held out (RMSD = 61 g kg
-1

) and whole-field out cross validation (RMSD = 

average of 89 g kg
-1

, 64 - 143 g kg
-1

 across 6 fields).  For this study, smearing of the soil surface 

increased the 30% validation RMSD to 74 g kg
-1

.  As part of the same field campaign, Morgan et 

al. (2009) predicted SOC in field-moist intact soil cores using partial least squares regression 

(PLSR) models validated using 30% of cores randomly held out (RMSD = 5.4 g kg
-1

) and whole-

field out cross validation, with RMSD increasing an average of 1.3 g kg
-1

, -0.4 to 4.5 g kg
-1

 

across 6 fields.  Smearing had only a minor effect on SOC prediction statistics.  Rossel et al. 

(2009), using a large regional spectral dataset for calibration (1287 laboratory- and 74 field-

collected spectra), predicted clay content with RMSE = 7.9% clay.  Ben-Dor et al. (2008) 

predicted SOC
1
 with RMSE = 1.2 g kg

-1
; however, samples used for model validation were not 

                                                 

1
 SOC was estimated assuming 58% organic carbon in SOM (Nelson and Sommers, 1982). 
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completely independent of those used for calibration.  Ben-Dor et al. (2008)concluded that the 

method has good potential for in situ soil characterization and requires additional study and 

validation using independent samples. 

On-the-go VisNIR typically involves a spectrophotometer either enclosed within or connected to 

(via fiber optics) an implement that is inserted into the soil and pulled behind a tractor.  Several 

surface soil properties including surface SOM and SOC have been mapped using on-the-go 

VisNIR with varying degrees of success. Shonk et al. (1991) used a single wavelength diode 

(red, 660 nm) to predict soil organic matter (SOM) in real-time with good success (R
2
 > 0.83, 

SOM = 1-6%).  Sudduth and Hummel (1993a; 1993b) developed an on-the-go NIR spectrometer 

(1650-2650 nm) system that predicted surface SOC with standard error of prediction (SEP) of 

2.3 g kg
-1

 SOC in laboratory tests; however, SEP increased to 5.3 g kg
-1

 in independent field 

tests.  Shibusawa et al. (1999) tested a prototype on-the-go VisNIR (400-1700 nm) instrument; 

measured SOM was highly correlated to certain NIR wavelengths, however independent 

validation was not executed.  More recently, Christy (2008) reported good predicted accuracy 

(RMSE = 3.0 g kg
-1

) for mapping SOC
1
 in Kansas (SD = 5.1 g kg

-1
, SOC = 3.0-26.3 g kg

-1
) using 

a shank-mounted on-the-go VisNIR sensor (950-1650 nm) and whole-field cross-validation (n = 

8 fields).  To the best of our knowledge, there are no studies published in the utility of on-the-go 

VisNIR for soil clay content estimation. 

The primary objective of this study was to compare the predictive accuracy for estimating SOC 

and soil clay content measured in situ with an on-the-go VisNIR sensor versus a lab-based sensor 

interrogating air-dry, sieved soil samples.  Researchers also tested regional (i.e. whole-field out) 

calibration models versus hybrid regional models (regional models including a few ñlocalò 

calibration samples), and quantified the change in prediction accuracy of hybrid models with 

increasing numbers of local samples in the calibration. 

2.2 Materials and Methods 

2.2.1 Study Area 

The study area for this research was in the north central region of Montana, USA (Figure 1).  

This region is characterized by soils formed in glacial till on gently rolling topography in a 

frigid, ustic, continental climate.  Soils in the study area were not highly weathered and typically 

were calcareous within 0.5 m of the surface.  Aridic intergrades of frigid, ustic, Mollisols, 

Entisols, and Inceptisols predominated.  Cropping systems in the study area generally consisted 

of reduced tillage, small grain-fallow rotations with a significant acreage managed by direct-

seeding (i.e. no-till).  All eight sampling sites had a general cropping history of cultivation 

beginning in the 1920ôs progressing to wheat-fallow rotations with multiple tillage operations per 

year and finally conversion to a direct-seeded wheat-fallow rotation between 2004 and 2005. 
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Figure 1.Geographical location of the study area with eight (8) selected farm fields. 

 

2.2.2 Digital and Field Data  

The sampling design and data collection for this project was multi-leveled and multi-faceted.  

Eight farm fields (259 hectares [ha]; 640 acres [ac]) were selected at random from a larger 

population of farm fields enrolled in a carbon offset marketing pilot. The eight selected fields 

were each divided into 16.2 ha (40 ac) sub-fields and one sub-field was randomly chosen for 

VisNIR scanning and soil sampling in the fall of 2006. 

 

The research team intensively scanned each sub-field using a new commercially available on-

the-go VisNIR sensor (Veris Technologies Inc., Salina, KS, USA).  Fields were scanned 

approximately a week after rains to allow enough dry down time to permit field access.  The 

Veris system employed a spectrophotometer (350-2224 nanometers [nm], 8-nm spectral 

resolution) built into an agricultural shank mounted on a toolbar and pulled behind a tractor 

(Christy, 2008).  Spectral measurements were made through a sapphire window mounted on the 

bottom of the shank with fiber optic cables transferring the diffuse reflected light from the soil to 
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the spectrometer and into a laptop computer for storage.  The shank was lowered to 

approximately 10 cm into the soil and pulled at approximately 5 km/h along 15-m spaced, north-

south transects (Figure 2).  Approximately 20 spectra were acquired per second and a spectral 

average was calculated every 2.5-3 s, representing approximately 4 m of travel.  Spectral 

averages were stored on the laptop computer in conjunction with Wide Area Augmentation 

System (WAAS) real-time corrected GPS data for each point.   

 

 

Figure 2. Example of on-the-go north-south oriented transects showing 

data collection points (open circles) and 100 reference soil sample 

locations (black crosses).  Blank areas within transects were caused by 

sensor skips and temporary WAAS GPS signal loss. 

 

Soil sampling was designed to capture representative variability within each sub-field.  A 15 m 

grid, following the same transects used for VisNIR scanning, was superimposed over each sub-

field and 100 georeferenced grid intersections were chosen randomly with a 30-m spatial 

inhibition function added to ensure representative coverage of the sub-field (Figure 2).  Three 

surface soil samples (0-10 cm) were taken using a slide hammer and 5 cm diameter coring tube 

in a 1 m triangular configuration straddling the VisNIR transect at each of the 100 selected 

intersection points and homogenized for further analysis in the lab.  Samples were dried, crushed 

to pass a 2 mm sieve, and scanned using a lab-based VisNIR spectrometer produced by 

Analytical Spectral Devices, Inc. (ASD Inc., Boulder CO, USA;  FieldSpec Pro, 350-2500 nm, 3 

and 10 nm spectral resolutions for the 512 element silicon photo-diode array (350-1025 nm) and 

InGaS (1025-2500 nm) detectors, respectively).  Soil total carbon (TC) was measured by dry 

combustion (LECO TruSpec, Leco Corp., St. Joseph, MI), soil inorganic carbon (IC) was 

determined by modified pressure calcimeter method (Sherrod et al., 2002), and soil organic 
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carbon (SOC) was determined by the difference (SOC = TC ï IC) (Bricklemyer et al., 2007).  

Soil clay content was determined by pipette method (Gee and Bauder, 1986).  For SOC and clay 

content, the standard error of laboratory measurement (SEL) was estimated using replicate 

laboratory measurements as described by Workman (2001). 

On-the-go spectral data used for model calibration and validation were extracted using GPS 

coordinates.  Using ArcMap (ESRI, Redlands, CA, USA), on-the-go measurement locations 

were matched with the nearest georeferenced soil sampling location and the corresponding 

VisNIR spectral data were extracted for post-processing, partial least squares regression (PLSR) 

modeling, and accuracy assessment. All spectra (lab-based and on-the-go) were checked for 

errors and smoothed using cubic smoothing splines with 1
st
 derivatives extracted in 10 nm 

increments directly from spline fits,  following methods outlined in Brown et al. (2006).   

2.2.3 Partial Least Squares Modeling 

Regional and ñhybridò Partial Least Squares Regression (PLSR) calibration models were derived 

for both SOC and soil clay content.  Regional models were constructed employing a whole-field 

out cross-validation approach, whereby each field was held out in turn for model validation, with 

data from the other seven fields used for model calibration.  For example, data for field #1 was 

held out from the calibration set, and data from fields 2-8 were used to calibrate PLSR models to 

independently predict SOC and clay content for field #1.  Then, data from field #2 was held out, 

and new PLSR models were derived using data from fields 1 and 3-8 to predict SOC and clay 

content for field #2.  The systematic removal of holding out data from whole fields, calibrating 

new PLSR models using data from the remaining fields, and predicting SOC and clay content for 

the held out field continued until each of the eight fields had been predicted.  For hybrid models, 

researchers included 1, 2, 3, 4, 5, 7, and 9 randomly selected ñlocalò samples from the held-out 

validation field in the calibration set, with the same 8-fold cross-validation regional modeling 

approach.  To test for potential loss in prediction accuracy due to differences in the spectral 

ranges of the two sensors (lab-based = 350-2500 nm, on-the-go = 350-2200 nm), regional and 

hybrid PLSR calibration models were also derived using lab-acquired spectra reduced to the 

same spectral range as the on-the-go spectrometer. 

The quality of PLSR model fit was evaluated using performance statistics derived from the 

regression of PLSR predicted vs. laboratory measurements (Brown et al., 2005; Gauch et al., 

2003): 
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where b and r
2
 are the slope and square correlation, respectively, from the least-squares 

regression of Ypred on Y lab, SEP = standard error of prediction, RPD = residual product 

differential.  Lack of accuracy is described by portioning mean squared deviation (MSD) into 

three components: squared bias (SB), non-unity regression line (NU) and lack of correlation 

(LC). Researchers derived the RPL statistic (Ratio of Prediction error to Lab reference error) as a 

simple method to scale SEP relative to the precision error of the standard laboratory reference 

method (SEL). 

2.3 Results 

Summary statistics for standard laboratory measured soil organic carbon (SOC) and soil clay are 

presented in Table 1.  Values for SOC did not exceed 27.2 g kg
-1

 and clay content ranged 

between 55 and 483 g kg
-1

 across eight farm fields.  Soil organic carbon varied little across all 

sites (ů = 3.2 g kg
-1
, CV = 26.7%) compared to soil clay (ů = 91.4 g kg-1, CV = 49.6%).  

Standard error of lab measurements (SELSOC = 0.95 g kg
-1

, SELclay = 19.7 g kg
-1

) accounted for 

22% and 29% of clay and SOC variation, respectively. 
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Table 1: Summary Statistics  

 

 

The research team did not achieve even semi-quantitative levels of validation accuracy for 

regional SOC modeling ( 

Table 2: PLSR model statistics 

 

Summary statistics for standard laboratory measured soil organic carbon (SOC) and 

soil clay content in eight (8) north central Montana, USA wheat fields.

N Mean ů Median Min Max CV (%) SEL

g kg
-1

g kg
-1

g kg
-1

g kg
-1

g kg
-1

% g kg
-1

SOC 765 12.1 3.2 11.8 6.0 27.2 26.7 0.95

Clay 311 216.2 91.4 209.0 55.0 483.0 42.3 19.7

ů = standard deviation, CV = coefficient of variation, SEL = standard error 

of laboratory measurement

Table 1. 

Table 2.  

Regional and hybrid PLSR model statistics predicting soil organic carbon (SOC) and soil clay content using full and reduced spectrum

 lab-based (Lab) and on-the-go (In Situ) VisNIR. 

Spectra 

Presentation

Full     

Lab

Reduced 

Lab

Reduced   

In situ

Full     

Lab

Reduced 

Lab

Reduced   

In situ

Full     

Lab

Reduced 

Lab

Reduced   

In situ

Full     

Lab

Reduced 

Lab

Reduced   

In situ

SEP 2.8 2.8 3.5 2.6 2.6 3.4 62.4 63.4 90.3 51.6 53.1 69.4

RPD 1.1 1.1 0.9 1.3 1.3 1.0 1.5 1.4 1.0 1.8 1.8 1.4

RPL 2.8 2.8 3.5 2.5 2.5 3.4 3.0 3.1 4.5 2.4 2.5 3.4

R
2

0.36 0.36 0.00 0.42 0.39 0.02 0.59 0.59 0.17 0.75 0.74 0.50

SB (%)
À

0.1 0.7 0.2 0.6 0.1 0.3 9.2 14.0 9.3 10.7 13.1 7.7

NU (%)
À

23.5 24.5 80.8 36.1 43.3 84.5 51.2 44.1 56.4 43.9 40.9 52.2

LC (%)
À

76.4 74.8 19.0 63.3 56.6 15.2 39.6 41.9 34.3 45.4 46.0 40.1

Full = full spectrum (350-2500 nm), Reduced = reduced spectrum (350-2200 nm), MSD = mean squared deviation, SB = squared bias, 

NU = non-unity of regression line slope, LC = lack of correlation, RPD = residual product differential, SEP = standard error of prediction.

RPL = ratio of prediction to laboratory error [((SEP
2
-SEL

2
)
0.5

)/SEL]
À
 percent of mean squared deviation

Regional (N=311) Hybrid-7 (N=257)

Clay (g kg
-1

)

Regional (N=765) Hybrid-9 (N=693)

SOC (g kg
-1

)
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).  The best regional SOC calibration model (RPD = 1.1, RPL = 1.8) was derived using lab-based 

spectroscopy applied to prepared samples (Table 2, Figs. 3-6), with in situ data yielding less 

accurate predictions (RPD = 0.9, RPL = 2.3).  Though RPL values are actually low, standard 

error of prediction (SEP) values (2.8 and 3.5 g kg
-1

 for lab-based and in situ data, respectively) 

were similar to ůsoc (3.2 g kg
-1

). The majority of mean squared deviation (MSD) for SOC 

predictions was attributed to lack of correlation (LC) using prepared sample data (LC = 76.4% of 

MSD) and non-unity of regression line slope (NU) using in situ data (NU = 80.8% of MSD). 
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Table 2: PLSR model statistics 

 

 

 

Table 2.  

Regional and hybrid PLSR model statistics predicting soil organic carbon (SOC) and soil clay content using full and reduced spectrum

 lab-based (Lab) and on-the-go (In Situ) VisNIR. 

Spectra 

Presentation

Full     

Lab

Reduced 

Lab

Reduced   

In situ

Full     

Lab

Reduced 

Lab

Reduced   

In situ

Full     

Lab

Reduced 

Lab

Reduced   

In situ

Full     

Lab

Reduced 

Lab

Reduced   

In situ

SEP 2.8 2.8 3.5 2.6 2.6 3.4 62.4 63.4 90.3 51.6 53.1 69.4

RPD 1.1 1.1 0.9 1.3 1.3 1.0 1.5 1.4 1.0 1.8 1.8 1.4

RPL 2.8 2.8 3.5 2.5 2.5 3.4 3.0 3.1 4.5 2.4 2.5 3.4

R
2

0.36 0.36 0.00 0.42 0.39 0.02 0.59 0.59 0.17 0.75 0.74 0.50

SB (%)
À

0.1 0.7 0.2 0.6 0.1 0.3 9.2 14.0 9.3 10.7 13.1 7.7

NU (%)
À

23.5 24.5 80.8 36.1 43.3 84.5 51.2 44.1 56.4 43.9 40.9 52.2

LC (%)
À

76.4 74.8 19.0 63.3 56.6 15.2 39.6 41.9 34.3 45.4 46.0 40.1

Full = full spectrum (350-2500 nm), Reduced = reduced spectrum (350-2200 nm), MSD = mean squared deviation, SB = squared bias, 

NU = non-unity of regression line slope, LC = lack of correlation, RPD = residual product differential, SEP = standard error of prediction.

RPL = ratio of prediction to laboratory error [((SEP
2
-SEL

2
)
0.5

)/SEL]
À
 percent of mean squared deviation

Regional (N=311) Hybrid-7 (N=257)

Clay (g kg
-1

)

Regional (N=765) Hybrid-9 (N=693)

SOC (g kg
-1

)
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Figure 3: Whole-field out validation of soil 

organic carbon predicted using partial least 

squares regression modeling of lab-based (a) 

and on-the-go VisNIR (b) 

Figure 4: Hybrid model validation of SOC 

predicted using PLSR modeling of lab-based 

(a) & on-the-go VisNIR (b) 

 

Regional calibrations for soil clay content were more accurate using lab-based interrogation of 

prepared samples.  The regional clay model derived from prepared sample spectra achieved 

semi-quantitative accuracy (RPD = 1.5, RPL = 3.0).  Calibrations using the in situ spectra, again 

yielded limited prediction accuracy (RPD = 1.0, RPL = 4.5).  The lab-based regional clay model 

SEP (62.4 g kg
-1

) was substantially lower than both the in situ regional model SEP (90.3 g kg
-1

) 
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and ůclay (91.4 g kg
-1

) (Table 2, Figures. 3-6).  The majority of the MSD for both prepared 

sample and in situ derived regional clay models was attributed to NU (51.2% and 56.4% of 

MSD, respectively). 

 

  

Figure 5: Whole-field out validation of soil 

clay content predicted using partial least 

squares regression modeling of lab-based (a) 

& on-the-go VisNIR (b) 

Figure 6: Hybrid model validation of soil clay 

content predicted using PLSR modeling of lab-

based (a) & on-the-go VisNIR (b) 
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Increasing the number of ñlocalò samples added to regional calibrations (i.e. hybrid models) 

yielded some improvement in predictive accuracy.  Adding 1 to 9 local samples to regional clay 

models increased RPD values from 1.4 to 1.8 for lab calibrations and 1.0 to 1.4 for in situ 

calibrations (Figure 7).  There were, however, only slight accuracy improvements for SOC 

calibrations when local samples were added to regional models (Figure 7, Table 2). 

 

 

Figure 7: Predictive accuracy response to the addition of local samples in hybrid partial least 

squares regression calibration models for soil clay content & soil organic carbon (SOC) 

 

Differences in the spectral range of the sensors had little effect on prediction accuracy.  Reducing 

the spectral range of the lab-acquired data to match the spectral range of the on-the-go sensor 

only reduced R
2
 from 0.42 to 0.39 for the hybrid-9 SOC model, and SEP and RPD were 

unchanged (Table 2).  Regional clay models were only slightly degraded with SEP increasing 1.0 

g kg
-1

 and RPD decreasing 0.1 (Table 2).  Similarly, the hybrid clay model SEP increased 1.5 g 

kg
-1

 (Table 2). 
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2.4 Discussion 

Both lab-based and on-the-go SOC predictive accuracy results, expressed as SEP, were similar to 

studies reviewed in the introduction, although not highly correlated with laboratory 

measurements.  Both lab-based and on-the-go regional and hybrid SOC model RPD values (0.9 ï 

1.3) were lower than on-the-go RPD (1.7) reported by Christy (2008).  But, measured SOC 

standard deviation (ůsoc = 3.2 g kg
-1

) in this study, was substantially less than ůsoc reported by 

Christy (5.1 g kg
-1

, 2008)
2
.  Interestingly, SEP values were similar between this and the Christy 

(2008) study (3.5 and 3.0 g kg
-1

, respectively).  Clay content was more variable than SOC (CV= 

42.3% vs. 26.7%, respectively), and clay models had higher RPD values.  It is important to 

remember that given constant prediction error (SEP), increasing target parameter variability (sY) 

will result in improved r
2
 and RPD statistics.  So the poor performance of on-the-go VisNIR in 

this study could be due to the low variability in SOC and to a lesser extent clay content.  The fact 

that even the lab-based VisNIR calibrations were very poor for SOC and only semi-quantitative 

for clay content lends credence to this argument. 

Previous studies have highlighted the necessity of a wider spectral range to accurately predict 

SOC.  For example, Brown et al. (2006) reported that reflectance between 2000 ï 2500 nm was 

important for SOC and clay content prediction.  Similarly, Mouazen et al (2006) suggested that 

collecting diffuse VisNIR reflectance between 1700 and 2500 nm improved prediction accuracy 

for wet, in situ soil nitrogen (N), carbon (C), sodium (Na), and magnesium (Mg) measurements; 

and Sudduth and Hummel (1993a) reported that 1660 ï 2620 nm was the most predictive range 

for organic carbon.  The spectral range of the on-the-go sensor in this study was 350 ï 2200 nm, 

compared to 350 ï 2500 nm captured by the laboratory instrument.  However, differences 

between the spectral ranges of the lab-based and on-the-go spectrometers did not contribute to 

meaningful differences in predictive accuracy.  The results from this study suggest that 1) 

spectral information between 2200 and 2500 nm did not improve lab calibrations for SOC and 

clay, and 2) the reduced spectral range was not responsible for degraded on-the-go sensor 

prediction accuracy for this study.   

On-the-go VisNIR measurements also have unique concerns related to continuously collecting 

data while moving through the field.  Soil passing the sensor during scanning could cause 

different wavelengths to be captured at different physical locations (Christy, 2008; Sudduth and 

Hummel, 1993a).  This potential problem was not a consideration in this study because the on-

the-go instrument employed an array spectrometer that captured the entire spectrum 

simultaneously by using a grating to separate the reflected light according to wavelength, and 

then projected the light onto an InGaAs detector with an integration time of 0.042 s.  Scanning 

type spectrometers, such as the lab-based instrument used in this study, measure one wavelength 

at a time and progress through the entire spectrum with an integration time of 0.1 s to complete a 

scan.  A scanning type spectrometer used on-the-go could degrade accuracy by measuring soil 

reflectance across different soil scenes as it collects data through the spectrum.  The scanning 

nature of the lab-based instrument was a non-issue in this study because soil samples were 

stationary when interrogated in the laboratory.   

                                                 

2
 ůsoc estimated for the Christy (2008) study assuming 58% SOC in soil organic matter (Nelson and Sommers, 

1982). 
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Soil heterogeneity may have caused reduced prediction accuracy for the on-the-go VisNIR 

sensor compared to the lab-based spectrometer.  Precipitation just prior to field sampling 

operations likely increased spatial and temporal variation of soil moisture across the study area.  

Oxygen-Hydrogen (O-H) bonds associated with water have two strong absorption features near 

1400 and 1900 nm which may have obscured spectral information important to on-the-go SOC 

and clay predictions.  More so, inconsistent soil roughness occurring as soil macro-aggregates 

were disturbed by pulling a shank through the soil also may have negatively impacted accuracy 

results.  This is consistent with previous studies that have indicated that in situ measurement 

accuracy can be degraded by heterogeneity in soil moisture, aggregation, and surface roughness 

(Christy, 2008; Morgan et al., 2009; Shonk et al., 1991; Waiser et al., 2007).   

Inconsistent soil presentation and soil smearing are other possible sources of error in this study.  

Sudduth and Hummel (1993a) reported considerable reflectance value offset as sensor-to-sample 

height varied from 5 to 25 mm.  The quartz-sapphire window of the on-the-go sensor in this 

study slid along the bottom of a trench opened by the lead edge of the shank.  Under ideal 

conditions, the sensor window would have consistent soil contact, which maintains a constant 

view height and angle for the reflected VisNIR signal.  However, wheat field surfaces are not 

smooth and pulling a VisNIR sensor behind a tractor over rough and uneven surfaces possibly 

caused inconsistent soil contact with the bottom of the trench, thus view height and angle 

variation could have occurred.  Additionally, soil smearing, particularly under the moist 

conditions during field sampling, could have occurred as the shank and sensor window slid along 

the trench.  Simulating a VisNIR sensor being pushed vertically into soil, Waiser et al. (2007) 

and Morgan et al. (2009) both reported higher RMSD for predicting clay and SOC when field-

moist intact soil cores were smeared prior to VisNIR interrogation.   

Differences in spatial support (Dungan et al., 2002) for the reference laboratory analyses vs. in 

situ VisNIR interrogations could have impacted the estimated accuracy for in situ VisNIR soil 

calibrations.  Data obtained on-the-go was the average of 20 spectra collected at ~ 5 km/h along 

a ~10-cm deep trench, with each resulting spectrum capturing approximately 4-5 m of travel.  

For both in situ and lab-based VisNIR model calibration and validation, we extracted three 0-10 

cm deep, 5 cm diameter soil cores at the vertices of a triangle that measured 1-m along each side 

and straddled the transect.  These samples were composited and homogenized for laboratory 

VisNIR and reference analysis.  Christy (2008), however, collected reference soil samples for 

model calibration and validation that were 1 cm deep, 3 cm wide, and 1 m long from the bottom 

of the trench directly interrogated by the on-the-go VisNIR sensor.  Support differences between 

the on-the-go sensor and laboratory analyses could have contributed to the poorer in situ vs. lab-

based calibrations reported in this study. 

Most of the potential problems with on-the-go VisNIR soil spectroscopy are eliminated in the 

laboratory due to processing steps that remove moisture, remove gravels, break up aggregates, 

homogenize soil material, and ensure good sample presentation.  An instrument that processed 

soils on-the-go, in the field prior to VisNIR interrogation would likely produce substantially 

better calibrations.  Alternatively, perhaps on-the-go VisNIR should only be applied to fields 

with substantial variability in soil properties of interest. 

Including up to nine ólocalô samples in hybrid models had differing effects on prediction 

accuracy for SOC and clay content.  Including up to nine ólocalô samples in hybrid SOC models 

had no apparent impact on predictive accuracies, likely because there was little SOC variability 
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across the study area (CV = 26.7%).  In comparison, clay content had greater variation across the 

study area (CV = 42.3% ) and adding ólocalô samples to regional clay models increased RPD 

from 1.5 to 1.8 and 1.0 to 1.4 for lab-based and in situ interrogations, respectively.  This finding 

suggests that hybrid models would be more effective for predicting target variables with greater 

variability. 

2.5 Conclusions 

Lab-based VisNIR spectroscopy provided somewhat more accurate predictions than in situ on-

the-go VisNIR sensing.  In terms of SOC predictive accuracy, our results are largely consistent 

with those previously published by Christy (2008), but on-the-go VisNIR was not able to capture 

the subtle SOC variability in Montana soils.  Estimating SOC in fields with low SOC variability 

did not produce usable results for either on-the-go or lab-acquired spectra. Spectra from prepared 

samples did, however, yield semi-quantitative regional and hybrid calibrations for soil clay.  

Regional clay models derived from on-the-go VisNIR spectra did not provide useful predictions; 

however, hybrid on-the-go soil clay models, using up to seven local samples in the calibration 

approached semi-quantitative predictive levels (RPD = 1.4, RPL = 3.4).  This suggests on-the-go 

VisNIR spectroscopy has potential for mapping soil clay, assuming that local samples are 

available for recalibration at every field.  Results comparing spectral ranges of the two 

instruments suggest increasing the spectral range of the on-the-go sensor similar to that of a lab-

based spectrometer will not improve predictions for this application.  Our findings indicate that 

on-the-go VisNIR might not be effective in mapping fields with relatively low target property 

variability.  Given the better performance with processed soil samples in the laboratory, 

researchers and equipment designers might consider developing instruments to process soils on-

the-go, in the field. 
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3. Intact soil core total, inorganic and organic carbon measurement using 

laser-induced breakdown spectroscopy (LIBS). (Accepted for publication, 

SSSAJ) 

Abstract 

Laser-induced breakdown spectroscopy (LIBS) is an emerging elemental analysis technology 

with the potential to provide rapid, accurate and precise analysis of soil constituents, such as 

carbon, in situ across landscapes.  Researchers evaluated the accuracy of LIBS measuring soil 

profile carbon in field-moist, intact soil cores simulating conditions that might be encountered by 

a probe-mounted LIBS instrument measuring soil profile carbon in situ. The team interrogated 

78 intact soil cores from three north central Montana wheat fields.  Samples from each core were 

analyzed in the laboratory for total carbon (TC), inorganic carbon (IC), and soil organic carbon 

(SOC). Partial least squares 2 regression (PLS2) calibration models were derived using 58 cores 

(227 samples) and independently validated at the field-scale with the remaining 20 cores (79 

samples). Researchers obtained the best LIBS validation predictions for IC (r
2
 = 0.66, SEP = 5.3 

g kg
-1

, RPD = 1.7) followed by TC (r
2
 = 0.63, SEP = 6.0 g kg

-1
, RPD = 1.6) and SOC (r

2 
=0.22, 

SEP = 3.2 g kg
-1

, RPD=1.1).  Though the standard error of prediction (SEP) for SOC was less 

than that for TC and IC, low SOC variability resulted in low r
2
 and RPD statistics.  Laser-

induced breakdown spectroscopy is fundamentally an elemental analysis technique, yet LIBS 

PLS2 models appeared to discriminate IC from TC.  Regression coefficients from these models 

suggested a reliance upon stoichiometric relationships between carbon (247.8 nm) and other 

elements related to total and inorganic carbon in the soil matrix [Ca (210.2 nm, 211.3 nm, and 

220.9 nm), Mg (279.55-280.4 nm, 285.26 nm), and silicon (Si) (251.6 nm, 288.1 nm)].  

Expanding the LIBS spectral range to capture emissions from a broader range of elements related 

to soil organic matter might improve SOC predictions.   Results indicate that LIBS spectral data, 

collected on intact soil cores, can be calibrated to accurately estimate and differentiate between 

soil total and inorganic carbon concentrations using PLS2 regression analysis.  A lack of SOC 

variability limited our ability to evaluate LIBS SOC prediction capabilities, with ůSOC = 3.47 g 

kg
-1

 = 2.5 × SELSOC (standard error of the laboratory reference measurement).  Calibration 

performance statistics from this study were substantially degraded relative to previously 

published research, a result attributed to the challenges of interrogating intact soil surfaces vs. 

prepared soil samples. As research matures for this emerging spectroscopic method, new field-

deployable equipment should be developed to exploit the unique ability of LIBS to rapidly 

characterize soil elemental composition. 

 

3.1 Introduction 

There is a growing need for rapid, accurate, and inexpensive methods to measure and verify soil 

organic carbon (SOC) sequestration for national greenhouse gas accounting and the development 

of a soil carbon trading market (Council, 1999; Gehl and Rice, 2007).  In particular, techniques 

for the rapid measurement of SOC in situ are required (Christy, 2008; Gehl and Rice, 2007).  

Laser-induced breakdown spectroscopy (LIBS) is an emerging spectroscopic technique for rapid 

quantification of soil carbon and other soil constituents (Cremers et al., 2001; Ebinger et al., 

2003; Martin et al., 2003; Martin et al., 2004; Martin et al., 2007).  Moreover, the LIBS 

instrument is capable of being mounted in a soil penetrometer (Mosier-Boss et al., 2002) which 
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could be deployed for rapid soil profile characterization and mapping at field and landscape 

scales. 

Laser-induced breakdown spectroscopy (LIBS) is fundamentally an elemental analysis probe 

based on atomic emission spectroscopy.  Thus LIBS has the potential to complement 

characterization of soil minerals and organic molecules provided by visible-near infrared diffuse 

reflectance spectroscopy (Brown et al., 2006; Clark, 1999; Hunt, 1982).  Typical LIBS analysis 

involves directing a focused Neodymium-doped yttrium aluminum garnet (Nd:YAG) laser onto 

the surface of a target material (Radziemski and Cremers, 1989).  The focused laser ablates a 

small amount of surface material producing expanding plasma, containing electronically excited 

ions, atoms, and small molecules.  As these excited species relax to lower electronic states they 

emit light at wavelengths indicative of the elemental composition of the ablated sample.  Some 

of the emission is captured by a fiber optic cable, directed into a dispersive spectrometer, and 

recorded with a charge coupled detector (CCD) (Clegg et al., 2009; Cremers et al., 2001; Ebinger 

et al., 2003; Martin et al., 2003; Radziemski and Cremers, 1989; Thompson et al., 2006).  The 

resulting spectra show discrete emission lines that represent electronic emissions for most atoms 

and ions present in the ablated material. LIBS spectra from elementally complex samples, such 

as soils, are spectrally complex as depicted in Figure 8.  The spectrally robust and complex 

nature of LIBS allows one to detect every element present in the sample probed (above the 

detection limit) on every laser shot. 

 

 

Figure 8: A LIBS spectrum (200-300 nm) of a representative soil core. LIBS spectra are typically 

spectrally rich containing many emission lines for each element in the sample.  Some of the 

emission features associated with the major elements present in the sample are identified. 
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Univariate calibrations of LIBS spectra are generally complicated by chemical matrix effects.   

Chemical matrix effects have been defined as chemical properties of the interrogated sample that 

impact the relationship between emission line intensity (or area) and the concentration of the 

element in the sample responsible for producing that line (Cremers and Radziemski, 2006; 

Eppler et al., 1996; Gornushkin et al., 2002; Häkkänen and Korppi-Tommola, 1998).  More 

specifically, matrix effects are related to the elemental and molecular composition of the sample, 

plasma composition, within plasma interactions, and laser-sample coupling efficiency.  

Previously published studies have attempted to compensate for these matrix effects and increase 

predictive accuracy by employing a variety of approaches (Clegg et al., 2009): (a)  peak height or 

peak area calibration to standards with known composition (Ebinger et al., 2003; Eppler et al., 

1996; Martin et al., 2003; Salle et al., 2006); (b) normalization of LIBS spectra to total emission 

intensity (Clegg et al., 2009; Thompson et al., 2006); (c) normalization of peak height or area to 

another spectral feature (Cremers et al., 2001; Eppler et al., 1996; Salle et al., 2006); (d) 

employing a plasma physics model without the use of calibration curves or ñcalibration-free 

LIBSò (Salle et al., 2006; Yaroshchyk et al., 2006); (e) spectrally averaging multiple 

interrogations per sample for calibration and and/or validation (Bousquet et al., 2007; Bousquet 

et al., 2008; Clegg et al., 2009; Eppler et al., 1996; Martin et al., 2003), and (f) employing 

chemmometric statistical approaches for predictive model calibration (Bousquet et al., 2007; 

Clegg et al., 2009; Ferreira et al., 2008; Martin et al., 2005; Martin et al., 2010; Martin et al., 

2007; Sirven et al., 2006) 

With proper calibration, LIBS can provide a precise and selective method for measuring metal 

ions such as lead (Pb), beryllium (Be), chromium (Cr), and strontium (Sr) in paint and soils 

(Sirven et al., 2006; Yamamoto et al., 1996), N, Pb, and Ba in sand (Eppler et al., 1996; Harris et 

al., 2004), and copper (Cu), zinc (Zn), and arsenic (As) in wood preservatives (Martin et al., 

2005).  Though there have been relatively few applications of LIBS for soil carbon 

determination, published calibrations show LIBS spectra to be well correlated with standard dry 

combustion measurements of total soil carbon with reported r
2
 values of 0.93 to 0.99 (Cremers et 

al., 2001; Ebinger et al., 2003; Martin et al., 2003; Martin et al., 2010; Martin et al., 2007).  

There is; however, no published literature demonstrating the ability of LIBS to distinguish 

between total and inorganic soil carbon. 

There has been little independent validation of published LIBS calibrations for soil carbon using 

a large number of soil samples.  Cremers et al. (2001) used a subset of 12 Colorado agricultural 

soil samples from conventionally tilled farms to calibrate a LIBS model (r
2
 = 0.96) and verified 

the model with a different subset (N=8) of the same Colorado soils, as well as soils from Los 

Alamos, NM (N=10) that formed in different parent materials (accuracy = 3 to 14% relative 

standard deviation).  Ebinger et al. (2003) used six randomly chosen soil samples from a dataset 

of 18 samples collected from three Colorado farm fields to calibrate a model (r
2
 = 0.99) then 

used the model to predict the remaining 12 samples (r
2
 = 0.95).  It is not yet standard practice in 

LIBS spectroscopy to óhold-outô independent samples for validation (Martin et al., 2003; Martin 

et al., 2010; Martin et al., 2007).  While published research shows the potential of LIBS for SOC 

determination, further work is required with larger sample sets and more rigorous model 

validation. 

The soil samples employed in the studies cited above were pre-treated prior to LIBS 

interrogation.  Pre-treatments included: air-drying, sieving and packing in quartz tubes (Cremers 

et al., 2001); pelletizing under pressure (Martin et al., 2004; Martin et al., 2010; Martin et al., 
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2007); and treating with acid to remove carbonates, pelletizing in a tube, and air-drying (Martin 

et al., 2003).  Though LIBS has been proposed as an in situ SOC measurement tool (Gehl and 

Rice, 2007), it remains to be demonstrated that in situ results will match those obtained with 

prepared samples.   To our knowledge, the study reported in this paper is the first to measure soil 

carbon content in field-moist intact cores without soil physical pretreatments. 

The objectives of this study were to (1) evaluate the accuracy of field-scale LIBS calibrations for 

soil profile carbon in field-moist, intact soil cores without soil pretreatments, and (2) determine if 

TC, IC, and SOC can be differentiated using LIBS calibrations.  Though important SOC 

elements such as H, O and N cannot be detected with the 200-300 nm LIBS spectral range 

employed in this study, researchers theorized that it might be possible to estimate SOC by 

subtraction should Ca and Mg emissions support the discrimination of total and inorganic C.  

The team defined accuracy as agreement between LIBS measurements and standard laboratory-

based soil measurements.  Field-moist intact cores were used to simulate conditions that might 

be encountered by a probe-mounted LIBS instrument measuring soil profile carbon in situ.  

3.2 Material and Methods 

3.2.1 Study Area 

The ñGolden Triangleò region of north central Montana, USA served as our research study area 

(Figure 9).  This region was characterized by soils formed in glacial till on gently rolling 

topography.  Soils were not highly weathered and were typically calcareous within 0.5 m of the 

surface.  Aridic intergrades of frigid, ustic, Mollisols, Entisols, and Inceptisols predominated.  

Cropping systems in the study area were generally reduced tillage small grain-fallow rotations 

with a significant acreage managed by direct-seeding or no-till.  All three sampling sites had a 

general cropping history of cultivation beginning in the 1920ôs progressing to wheat-fallow 

rotations with multiple tillage operations per year and finally conversion to a direct-seeded 

wheat-fallow rotation between 2004 and 2005. 

 

3.2.2 Soil Sampling 

In 2006, 78 intact cores were obtained from three 16.2 ha sub-fields in north central Montana 

with locations shown in Figure 9.  Soil coring locations were selected based on surface soil (0-10 

cm) visible and near-infrared (VisNIR) reflectance acquired for a parallel study focused on that 

technology (Bricklemyer and Brown, 2010).  Intact, 4.45 cm diameter by 50 cm deep soil cores 

were extracted using a truck-mounted hydraulic soil sampling tube fitted with removable plastic 

sleeves (Giddings Machine Co., Windsor, CO).  The field-moist intact cores were transported to 

the laboratory and stored under refrigeration prior to interrogation.  
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Figure 9: Geographical location of the study area with 3 selected farm fields (A), & randomly 

selected calibration (triangles) & validation (circles) core locations at the LYD (B), HOR (C), & 

MAT (D) sites. 

 

3.3 Core Interrogation 

Researchers interrogated intact soil cores to simulate conditions that might be encountered by a 

penetrometer-mounted LIBS instrument performing in situ soil characterization following the 

general protocol of Waiser et al. (2007).  Each field moist core was interrogated at 8 depths 

through ~ 3 x 3 cm windows cut in the plastic core sleeve (Figure 10). A prototype Los Alamos 
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